
tion. Variables are ordered in memory
to effect optimal usage of cache. To
date, we have run calculations on the
IBM-SP, the INTEL Tflops machine,
the DEC Alpha machine, and the T3D.

Rayleigh-Taylor Instability
As an example of our research, we

use the PPM code to simulate the
Rayleigh-Taylor instability and tur-
bulent mixing on a unit cube
spanned by a grid containing 512
points in each of the three directions.
This case was run on the ASCI Blue
Pacific ID System using 128 nodes.
The initial equilibrium state consists
of a γ = 5/3 gas, in which the subvol-
umes above and below the midplane
are stably stratified equilibria. The
internal energies are piecewise con-
stant, while the density and pressure
decrease exponentially with height,
but have different scale heights above
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In many hydrodynamics applica-
tions, the relevant length scales
range over several orders of mag-

nitude, so that finite-difference direct
numerical simulations (DNS) are
computationally not feasible for the
driving parameters of interest. To
simulate the dynamically important
range of scales, we will perform
large-eddy simulations (LES) instead.
Using LES, the dynamical effects of
the unresolved scales are modeled by
a subgrid-scale parameterization, and
the resolved scales are calculated
explicitly. These parameterizations
allow the use of fewer grid points
than would be necessary for a DNS.
A major thrust of the ASCI applica-
tions programs is a shift from
two-dimensional to three-dimen-
sional physics computations.
Turbulence in two and three dimen-
sions is profoundly different, and the
subgrid scale parameterizations
developed for 2-D flow are generally
insufficient for modeling 
3-D flow.  Thus, a principal research
topic in this project is to develop sub-
grid-scale parameterizations from
3-D hydrodynamic theory and exper-
iments and to validate them against
fully resolved DNS and available
experimental data. 

standard numerical techniques in
regions where the solution is smooth.
However, in regions with discon-
tinuities, such as strong shocks, the
Godunov method approximates the
solution well by analytically solving
an associated Riemann problem. This
is an idealized problem describing the
evolution of a simple jump into shocks
and/or rarefactions, with a contact
discontinuity in between. Mono-
tonicity constraints ensure that these
discontinuities remain sharp and
accurate as they traverse the
computational grid. The higher-order
spatial interpolation in the PPM
allows steeper representation of
discontinuities, thus allowing a more
accurate solution to a wider class of
problems. For some of our simulations,
molecular dissipation processes are
explicitly modeled, in which case the
simulations are of the Navier-Stokes

Mission 
The ASCI fluid turbulence team
studies turbulence processes in
strongly-compressible three-
dimensional hydrodynamic flows
and develops subgrid-scale
parameterizations of turbulence
effects for large-eddy numerical
simulations.

Figure 1.  Mixing of the heavier fluid, which is initially on top, with the fluid on the bottom is
known as the Rayleigh-Taylor instability.

Numerical Approach and Pro-
gramming Model

We are using several numerical
simulation codes, predominately one
based on the piecewise parabolic
method (PPM), which is a higher-
order accurate Godunov method
developed by Colella and Woodward.
The Godunov approach is typical of

equations rather than the Euler
equations.  Parallelization across
computational nodes is implemented
by domain decomposition with
message-passing. The subdomains are
three-dimensional and contain extra
border cells to allow intermediate
computation, thereby reducing the
required interprocessor communica-
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and below the midplane. The density
jumps by a factor of 2 from below to
above the midplane, corresponding to
an Atwood number of 1/3, while the
pressure is continuous. The sound
speed corresponding to the equilibrium
state below the midplane is 1.0. The
simulation includes molecular dissipa-
tion with a  Prandtl number of 1.0. The
boundaries are periodic in the horizon-
tal directions and impenetrable in the
vertical direction.  A random spectrum
of low-level velocity perturbations
away from the equilibrium state is ini-
tially imposed. After the initial linear
mixing phase, bubbles (rising from
below) and spikes (falling from above)
begin to form. Afterward, the horizon-
tal fluctuation scales grow in size and
the physical system evolves toward a
stably stratified equilibrium.  Figure 1
shows the temperature field at time 
t = 4.0. Figure 2 shows the spectra of
vertical velocity (in terms of squared
amplitude per mode) at the midplane
as a function of horizontal wave num-
ber for various grid resolutions. The 
512 × 512 × 512 case appears to be con-
verged (with respect to grid resolution),
with the middle portion of the curve
representing a possible inertial range.

Richtmyer-Meshkov Instability
A second example of our work

involves simulating the Richtmyer-
Meshkov instability, which is the
impulsive-acceleration limit of the
Rayleigh-Taylor instability. This insta-
bility occurs, for example,  when a
shock passes through an interface of
two fluids of differing density. We
consider an elongated domain having
dimensions 0.5 × 0.5 × 1.37, spanned
by a 192 × 192 × 448 mesh. A gas hav-
ing a 2-fold density contrast across a
single-mode perturbed planar inter-
face impinges on a higher-density,
higher-pressure gas to initiate a
highly supersonic (Mach 6) shock on
the low-density side of the contact
discontinuity. We advect a passive
scalar field that measures the degree
of mixing of the low- and high-den-
sity fluids.  Figure 3(a) shows the
passive scalar in the aftermath of the
interaction of the shock with the con-
tact discontinuity. The development
of fine-scale, non-chaotic features is
evident. Figures 3(b) and 3(c) depict
the result of passing an additional
Mach 6 shock through the interface
from the same and opposite sides,
respectively. There is a distinct
change in character, as much of the
fine-scale structure is smeared out.
Figure 4 shows the width of the mix-
ing layer (measured by the departure
of the passive scalar from its initial
values) as a function of time. For the
second shock phase (rightmost
curve), the diamonds indicate the
case where the second shock is in the
same direction as the first, and the
crosses indicate the case where the
second shock is coming from the
opposite side. The solid curves repre-
sent logarithmic fits, and the dashed
curves are power law fits. The for-

ward and reverse shock cases differ
by only a slight delay.

Evaluation of High-Performance
Computing Platforms

This project has an important sec-
ondary goal, that of exploring the
limits of ASCI high-performance 
computing platforms for three-
dimensional hydrodynamics applica-
tions. This would include scalable,
distributed memory massively paral-
lel processors as well as shared
memory processor clusters. Our high
demands on data storage, visualiza-
tion, and archival storage will test the
robustness of the problem-solving
environment as well.

We are collaborating with Paul Wood-
ward and David Porter of the University
of Minnesota, with Andrzej Domaradzki
of the University of Southern California,
and with Steven Orszag of Cambridge
Hydrodynamics, Inc.
For more information about ASCI 
fluid turbulence, contact: 
William P. Dannevik, (925) 422-3132,
dannevik1@llnl.gov; 
Ronald H. Cohen, (925) 422-9831, 
rcohen@llnl.gov; or 
Arthur A. Mirin, (925) 422-4020,
mirin@llnl.gov.
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Figure 2.  The spectra of vertical velocity at the
midplane with respect to horizontal wave num-
ber, as a function of grid resolution, for the
Rayleigh-Taylor problem. 

Figure 3.  A passive scalar used to indicate the degree of mixing, for the Richtmyer-Meshkov problem. Blue indicates low density, and red high density.

Figure 4.  The width of the mixing layer as a
function of time, for the Richtmyer-Meshkov
instability.
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